Hi,
Tanks very much for help
you are right it has been my mistake selecting the board
now board it is correctly recognized and romfs is 8MB
there are all the models
is there some example to follow about YOLOv5?
I tryed it but I have some interpretation problem regarding the model outputs
they seams to not correspond to documentation
m: { model_size: 1975512, model_addr: 0x9180fdf0, ram_size: 676160, ram_addr: 0xc0017780, input_shape: ((1, 224, 224, 3),), input_scale: (0.00392157,), input_zero_point: (0,), input_dtype: (‘B’,), output_shape: ((1, 3087, 6),), output_scale: (0.00770494,), output_zero_point: (3,), output_dtype: (‘B’,) }
i: [<Normalization object at 3000ad90>]
o: [array([[[0.0308197, 0.0308197, 0.0154099, 0.0693444, 0.0, 0.993937],
[0.0308197, 0.0308197, 0.0385247, 0.0616395, 0.0, 0.993937],
[0.0308197, 0.0308197, 0.0462296, 0.0693444, 0.0, 0.993937],
[0.0616395, 0.0308197, 0.0154099, 0.0693444, 0.0, 0.993937],
[0.0616395, 0.0231148, 0.0385247, 0.0462296, 0.0, 0.993937],
[0.0616395, 0.0231148, 0.0462296, 0.0539346, 0.0, 0.993937],
[0.0770494, 0.0231148, 0.0154099, 0.0616395, 0.0, 0.993937],
[0.0770494, 0.0231148, 0.0385247, 0.0385247, 0.0, 0.993937],
[0.0770494, 0.0231148, 0.0462296, 0.0462296, 0.0, 0.993937],
[0.130984, 0.0154099, 0.0154099, 0.0616395, 0.0, 0.993937],
[0.123279, 0.0154099, 0.0385247, 0.0308197, 0.0, 0.993937],
[0.130984, 0.0154099, 0.0462296, 0.0462296, 0.0, 0.993937],
[0.169509, 0.0154099, 0.0154099, 0.0616395, 0.0, 0.993937],
[0.169509, 0.0154099, 0.0385247, 0.0231148, 0.0, 0.993937],
[0.169509, 0.0154099, 0.0462296, 0.0308197, 0.0, 0.993937],
[0.192623, 0.0231148, 0.0154099, 0.0616395, 0.0, 0.993937],
[0.192623, 0.0154099, 0.0385247, 0.0231148, 0.0, 0.993937],
[0.192623, 0.0154099, 0.0462296, 0.0308197, 0.0, 0.993937],
[0.238853, 0.0154099, 0.0154099, 0.0616395, 0.0, 0.993937],
[0.238853, 0.0154099, 0.0385247, 0.0231148, 0.0, 0.993937],
[0.238853, 0.0154099, 0.0462296, 0.0308197, 0.0, 0.993937],
[0.269673, 0.0154099, 0.0154099, 0.0616395, 0.0, 0.993937],
[0.269673, 0.0154099, 0.0385247, 0.0231148, 0.0, 0.993937],
[0.277378, 0.00770494, 0.0462296, 0.0308197, 0.0, 0.993937],
[0.300493, 0.0154099, 0.0154099, 0.0539346, 0.0, 0.993937],
[0.300493, 0.0154099, 0.0308197, 0.0385247, 0.0, 0.993937],
[0.308197, 0.0154099, 0.0385247, 0.0462296, 0.0, 0.993937],
[0.339017, 0.0154099, 0.0154099, 0.0616395, 0.0, 0.993937],
[0.331312, 0.0154099, 0.0385247, 0.0308197, 0.0, 0.993937],
[0.331312, 0.0154099, 0.0462296, 0.0385247, 0.0, 0.993937],
[0.385247, 0.00770494, 0.0154099, 0.0462296, 0.0, 0.993937],
[0.385247, 0.00770494, 0.0385247, 0.0154099, 0.0, 0.993937],
[0.385247, 0.00770494, 0.0385247, 0.0154099, 0.0, 0.993937],
[0.408362, 0.00770494, 0.0154099, 0.0539346, 0.0, 0.993937],
[0.408362, 0.00770494, 0.0385247, 0.0154099, 0.0, 0.993937],
[0.408362, 0.0, 0.0462296, 0.0154099, 0.0, 0.993937],
[0.454591, 0.00770494, 0.0154099, 0.0539346, 0.0, 0.993937],
[0.454591, 0.00770494, 0.0385247, 0.0154099, 0.0, 0.993937],
[0.454591, 0.0, 0.0462296, 0.0154099, 0.0, 0.993937],
[0.493116, 0.00770494, 0.0154099, 0.0462296, 0.0, 0.993937],
[0.500821, 0.00770494, 0.0385247, 0.0154099, 0.0, 0.993937],
[0.500821, 0.00770494, 0.0462296, 0.0231148, 0.0, 0.993937],
[0.516231, 0.0154099, 0.0154099, 0.0385247, 0.0, 0.993937],
[0.516231, 0.0154099, 0.0385247, 0.0231148, 0.0, 0.993937],
[0.516231, 0.0154099, 0.0385247, 0.0231148, 0.0, 0.993937],
[0.531641, 0.0231148, 0.0154099, 0.0616395, 0.0, 0.993937],
[0.531641, 0.0154099, 0.0385247, 0.0385247, 0.0, 0.993937],
[0.531641, 0.0154099, 0.0462296, 0.0462296, 0.0, 0.993937],
[0.57787, 0.0154099, 0.0154099, 0.0616395, 0.0, 0.993937],
[0.585575, 0.0154099, 0.0385247, 0.0231148, 0.0, 0.993937],
[0.585575, 0.0154099, 0.0462296, 0.0308197, 0.0, 0.993937],
[0.6241, 0.00770494, 0.0154099, 0.0539346, 0.0, 0.993937],
[0.6241, 0.00770494, 0.0385247, 0.0154099, 0.0, 0.993937],…
and documentation say:
class yolo_v5_postprocess – YOLO V5¶
Used to post-process YOLO V5 model output.
Constructors¶- classml.postprocessing.yolo_v5_postprocess(threshold: float = 0.6, nms_threshold: float = 0.1, nms_sigma: float = 0.1)→ yolo_v5_postprocess¶
Create a YOLO V5 postprocessor.
threshold
The threshold to use for postprocessing.
This post-processor returns a list of rect [x, y, w, h]
and score tuples for each class in the model output. E.g. [[((x, y, w, h), score)]]
. Note that empty class list are included in the output to ensure the position of each class list in the output matches the position of the class index in the model output.
Best Regards
Giuseppe
.....