multi coies of an image

Here is a short video of it in action just using 1 binary copy with just red threasholding see - YouTube

and here is the code that was running to make that video

import sensor, image, time, mjpeg

sensor.reset()
sensor.set_pixformat(sensor.RGB565) # grayscale is faster (160x120 max on OpenMV-M7)
sensor.set_framesize(sensor.QQVGA)
sensor.skip_frames(time = 2000)
clock = time.clock()
extra_fb = sensor.alloc_extra_fb(sensor.width(), sensor.height(), sensor.RGB565)
red_threshold = (17, 70, 29, 73, -25, 50) # L A B

while True:
    clock.tick()
    img = sensor.snapshot()
    extra_fb.replace(img)
    extra_fb.binary([red_threshold])
    extra_fb.erode(1)

    for r in extra_fb.find_rects(threshold = 100):
      if r.w()<25:
        img.draw_circle(r.x()+r.w()//2, r.y()+r.h()//2, r.w()//2, color = (0, 255, 0))
    print("FPS %f" % clock.fps())